The choice of safe clotting factor concentrate for treatment of haemophilia in Hong Kong - recommended guidelines

> Scientific Committee of the Advisory Council on AIDS Hong Kong

> > July 1994

1. Introduction

Scientific and medical evidence is now sufficiently well established to merit an update in therapeutic policy for the management of haemophilia. The purpose of this paper is to review recent scientific data on coagulation concentrate therapy, and the efficacy and safety of these products.

Concentrates (table I) currently used for various bleeding disorders are listed below with details of manufacturing method and specific activity, and the level of contaminated protein.

Туре	Production method	Sterilisation	Specific activity * (u/mg)	Contaminating protein
Plasma (for comparison)			0.017	
Crude (cryoprecipitate)	Cryoprecipitate	None	0.1-0.9	Abundant plasma proteins, in particular fibrinogen & fibronectin.
Second generation concentrates of intermediate purity (IP)	Conventional fractionation methods	Yes	1-10	<1% F VIII, contains many plasma proteins - fibrinogen, fibronectin, immunoglobulins and â 2microglobulin.
Third generation concentrates of high purity (HP)	Conventional chromatographic techniques Immunoaffinity	Yes	100-250 (no albumin added, the vWF present stabilizes F VIII). 9-22 (after addition of albumin).	Trace amounts of fibrinogen & fibronectin. Albumin contain 2- 5% impurities. Murine proteins from
	purification (immobilised monoclonal antibodies)		2-15 (final product); prior to albumin addition (for stabilization), the specific activity could be up to 2500-3000.	the monoclonal antibodies may be present in minute quantities.

Table I: Currently available F VIII concentrate – derived from human plasma

* specify activity = units of activity per unit of protein content (u/mg) [appendix (pages 6-11) : high purity factor VIII, factor IX products currently available]

2. Viral safety of clotting factor concentrates

The efforts to reduce the risk of viral disease arising from the use of clotting factor concentrates have been quite successful. However, additional steps need to be taken to further protect the users of these products.

Step One: viral burden.

Mass screening of HBsAg, anti-HCV and anti HIV-1 and -2 to reduce

- HBsAg testing screens out over 99% of the infected donors.
- The sensitivity of anti-HCV test is considerably less compared to that of HBsAg. All plasma pool should therefore be considered as potentially HCV contaminated.
- Anti HIV-1 and -2 screening test is highly sensitive. However, all plasma pool should be considered as potentially HIV contaminated because of the "window period".

Step Two: Physical or chemical methods are used to inactivate or remove contaminating viruses. All clotting factor concentrates now undergo at least one viral attenuation process in addition to purification viz:

- Wet heat.
- Dry heat at 80 for 72 hours (BPL, UK).
- Solvent-detergent treatment to disrupt membranes of lipid enveloped viruses.
- Physiochemical treatment with B-propiolactone and ultraviolet irradiation.
- Immunoaffinity chromatography.

This two-step approach has been highly effective and is essentially safe with respect to transmission of viral infections.

3. General therapeutic recommendations

3.1 Hepatitis B vaccination

All patients who are sero-negative to hepatitis B and are either receiving blood products or could be considered, because of their medical condition, to be eligible for blood product therapy at any stage, should be immunized against hepatitis B. Such patients require regular follow-up of their hepatitis B medical status and revaccination when appropriate.

3.2 Use of DDAVP (Desmopressin acetate)

All patients with moderate/mild haemophilia and mild vWD should preferably be

assessed for response to DDAVP as part of their initial assessment. For such patients, defined efficacy of DDAVP therapy would be highly cost-effective in their management, and would reduce the risks of unnecessary exposure to blood product therapy.

3.3 Use of Cryoprecipitate

Prior to development of effective viral attenuation of commercial lyophilized factor VIII concentrates, cryoprecipitate was considered safer from transmission of viral infections because of the reduced number of donor exposure, ie 4 to 16 donor units per treatment, as compared to exposure to 10,000 to 20,000 donor units per single lot of commercial concentrate. The latest recommendation from the UK Regional Haemophilia Centre Directors Committee (1993) was to discontinue use of cryoprecipitate if viral inactivated concentrates are available.

4. Specific recommendations: HIV viral safety

4.1 Patients who are HIV seropositive

In HIV seropositive haemophilia patients requiring blood products therapy, high purity (HP) factor VIII/IX products should replace IP materials to restrict immunosuppression.

4.2 Patients who are HIV seronegative

• There is now considerable evidence that improved viral-depleting processes and donor screening practices have resulted in factor VIII products with greatly reduced risk for transmission of HIV. No seroconversions to HIV have been reported with any of the factor VIII products currently marketed in the United States/UK, including products that are heated in aqueous solution (pasteurized), solvent-detergent treated, and/or immunoaffinity purified. Thus, each of these methods appear to have greatly reduced risk of HIV transmission as compared to older methods of viral inactivation.

• Recombinant Factor VIII (rFVIII)

While there have been no reported seroconversions to HIV-1, HIV-2 or hepatitis B or C viruses due to the use of currently marketed, viral-inactivated, plasmaderived products, there is always the possibility of human viral transmission. Recombinant factor VIII (rFVIII), produced by well-established hamster cell lines, which have been transfected with a gene for human factor VIII, is stabilized in human albumin. The risk of human viral contamination is regarded as lower than that of plasma-derived factor VIII products.

4.3 Patients with factor IX deficiencies

In all patients with factor IX deficiency requiring blood product therapy, it is recommended that HP factor IX concentrates be adopted as soon as practically possible within the constraints of availability and licensing. Patients with mild factor IX deficiencies undergoing surgery should be treated with HP factor IX concentrates in preference to fresh frozen plasma.

4.4 Patients with vWD

For the management of symptomatic vWD, it is recommended that IP concentrates should be progressively replaced by more specific HP materials subject to the assessment of data from on-going clinical trials.

* **Relationship between purity and immunoimpairment:** There is considerable controversy over the issue. Evidence that HP concentrates induce less alterations in parameters of cell-mediated immunity exist, but is by no means conclusive. The UK Regional Haemophilia Director Committee favours the use of HP to IP concentrates, in particular for HIV positive patients in their 1993 recommendation.

References

- 1 The National Haemophilia Issue (MASAC) Revised May 8, 1993.
- 2 Recommendations on choice of therapeutic products for the treatment of patients with haemophilia A, B and vWD (UK Regional Haemophilia Centre Directors Committee) Blood coagulation and fibrivologous Vol. 3, 1992.
- 3 Viral safety of clotting factor concentrates, seminars in Thrombosis and Haemophilia statistics Vol. 19, No. 1, 1993.

TABLE I. FVIII PRODUCTS LICENSED IN THE U.S.

A. <u>RECOME</u> Product	<u>31NANT (R) VIII I</u>	Method of Viral Depletion/	Specific Act Disc	tivity x counting	Hepatitis Safety Studies in Humans
<u>Name</u>	<u>Manufacturer</u>	Inactivation		bumin	With this product
Recombinate ä	Baxter	See below **	1.65 to 3,00 19 iu/mg Protein	00 + *	Yes
Kogenate [®]	Miles	See below ***	8-30 3,00	00 + *	Yes

* Representative sample from in-process materials prior to addition of albumin.

DECOMPINIANT (D) VIII DOODUCTS

۸

σ

- ** The production process for Recombinateä contains a number of steps, (immunoaffinity chromatography, exposure to virucidal solutions, pasteurization, etc.) which are capable of inactivating or removing viruses. The process has been validated to inactivate or exclude > 1 x 10¹ log of model enveloped and non-enveloped viruses.
- *** The production process for Kogenate[®] combines anion and immunoaffinity chromatography with heat treatment step. This process has been validated for a 12 log reduction of relevant model viruses.

B. IMMUNOAFFINITY PURIFIED FVIII PRODUCTS DERIVED FROM HUMAN PLASMA

			Specif	fic Activity X	Hepatitis	<u>Safety Studies in Humans</u>
Product		Method of Viral		Discounting	With this	With another product, but similar
<u>Name</u>	<u>Manufacturer</u>	Inactivation	<u>Final</u>	Albumin	<u>product</u>	viral inactivation method
Monoclate P	Armour	Pasteurized	@5-10	3,000+	Yes	Yes
		(60 , 10 h)			(ongoing)	
Hemofil M	Baxter-Hyland	Solvent-detergent	@2-11	3,000+	Yes ⁽³⁾	
	U U	(TNBP/Triton X-100) 25 , ³ 10 h		,		
			00 11	2 000	NT	T ₂ (3)
Coagulation FVIII,	(Manufactured by Baxter-Hyland for	Solvent-detergent (TNBP/Triton X-100)	@2-11	3,000+	No	Yes ⁽³⁾
Method M	Am Red Cross)	(1NDP/171001 X-100) 25 , ³ 10 h				
		 , _ , _ ,				

X NOTE: The degree of product purity is reflected by the specific activity of FVIII (units/mg protein). Since most FVIII concentrates (including recombinant FVIII) have human serum albumin added as a stabilizer, most persons look at the specific activity discounting albumin. The immunoaffinity purified FVIII.

C. INTERMEDIATE PURITY AND HIGH PURITY FVIII PRODUCTS DERIVED FROM HUMAN PLASMA

C. <u>INTERVIED</u> Product		Method of Viral	Specific	Activity ^x Discounting	Hepatitis Safety Studies in	<u>Humans</u> With another product,
<u>Name</u>	<u>Manufacturer</u>	Inactivation		<u>Albumin</u>	With this product	but similar method
Profilate OSD	Alpha	Solvent-detergent (tri(n-butyl) phosphate (TNBP) and polysorbate 80) 27 , 6 h	@6-10		No	Yes
Koate-HP	Cutter	Solvent-detergent (TNBP+polysorbate 80), ³ 24 , 6 h		50	No	Yes
NY Blood Center FVIII-SD	NYBC, Melville Biologics	Solvent-detergent (TNBP and Cholate) ³ 24, 6 h	@1		Yes ⁽¹⁾	
Humate P	Behringwerke (distributed by Armour)	Heated in solution (pasteurized), 60 , 10 h	@1-2		Yes ⁽²⁾	
Melate SD	N.Y. Blood Center Melville Biologics	Solvent-detergent (TNBP + polysorbate 80) ³ 24 , 6 h	@50-150		No	Yes

X NOTE: The degree of product purity is reflected by the specific activity of FVIII (units/mg protein). Since most FVIII concentrates (including recombinant FVIII) have human serum albumin added as a stabilizer, most persons look at the specific activity discounting albumin. The immunoaffinity purified FVIII.

⁷

FVIII PRODUCTS LICENSED IN THE U.S. (Continued)

D. <u>PORCINE FVIII</u>

			Specific	Hepatitis Safety Studies in Hu	mans
Product		Method of	Activity		With another product,
<u>Name</u>	<u>Manufacturer</u>	Inactivation	Final	With this product	but similar method
Hyate C	Porton/Speywood	None	>50	No (but no report of	No
				transmission of human viruses)	

TABLE II. F IX PRODUCTS CURRENTLY LICENSED IN THE U.S.

A. <u>COAGULATION F IX PRODUCTS</u>

9

Product <u>Name</u>	Manufacturer	Method of Viral Depletion/ <u>Inactivation</u>	Specific Activity <u>Final</u>	<u>Hepatitis Safety Str</u> <u>With this product</u>	<u>idies in Humans</u> With another product, but <u>similar viral inactivation method</u>
AlphaNine	Alpha	Heated in N-Heptane solution, 60 , 20 h and affinity chromatography	@84	No	Yes (with HCV transmission in 1980's)
AlphaNine SD	Alpha	TNBP and Polysorbate 80 24°-30 , >24 h, and affinity chromatography	@190	No	Yes
Mononine	Armour	Monoclonal antibody column, Sodium Thiocyanate, Ultrafiltration	160+	Yes ⁽⁴⁾	
B. <u>F IX COM</u>	PLEX CONCEN	<u>VTRATES</u>			
		Method of Viral <u>Inactivation</u>			
Konyne 80	Cutter	Dry heat, 80 , 72 h	Not Available	No	Yes ⁽⁵⁾
Proplex T	Baxter-Hyland	Dry heat, 68 , 144 h	@47	No	No
Profilnine HT (wet method)	Alpha	Heated in N-Heptane solution 60 , 20 h	@4.5	No	Yes ⁽⁶⁾ (with HCV transmission in 1980's)
Bebulin	Immuno	Vapor heated (10h, 60 , 1190 mbar pressure plus 1 h, 80 , 1375 mbar)	@2	Yes ⁽⁷⁾	
		LEX CONCENTRATES			
Autoplex T	Baxter-Hyland	Dry heat, 68 , 144 h	@5	No	No
FEIBA VH	Immuno	Vapor heated (10 h, 60 , 1190 mbar plus 1 h, 80 , 1375 mbar)	@0.8	No	Yes ⁽⁸⁾

UK Regional Haemophilia Centre Directors

Product	LIC series	Viral inact.	Sp. act.	Cost ^{>}
(manufacturer)	(type & pence) donor pool	purification	iu/mg (scicatiles)	p/iu
Monoclate P	Fail	Promission	5-10 (>3000)	37-45
(Armour)	(HP-3)	MAb Immunoaffin	(Human serum	
	Paid donors	Chromatography	albumin)	
ISM	Transitional (named	S/D	5-10 (>2000)	37-44
(Kini course	patient for 250	MAb Immunoaffin	(Human serum	
vicis BPL —	i.u vials)	Chromatography	albumin)	
Baxter tack)	(HP-3) Voluntary donors			
Kogenate	СТХ	S/D	5-10	N/A
(Cutter/Bayer)	(HP-4)	Gene insertion	(Human serum	
	No donors	MAb Immunoaffin Chromatography	albumin)	
SNBTS HP VIII	СТХ	S/D	>200	Central funded
(CRTS Lille	named patient	Ion exchange	None	free issue
concract with	(HP-3)	Chromatography		
SNBTS)	Voluntary donors			
Factor VIII VHP	Named patient (CTX	S/D	>200	30-40
(CRTS Lille)	pending)	Ion exchange	None	
	(HP-3) Voluntary donors	Chromatography		
	v oruntary donors			
Ocavi	CTX	S/D	>200	30-40
(Ocupharses)	Named patient (HP-3)	Ion exchange Chromatography	None	
	Paid donors	Chromatography		
Koate HS	CTX	S/D	>150	N/A
(Cutter/Bayer)	(HP-3) Paid donors	Gel exclusion Chromatography	None	
	T ald donors	Chromatography		
8Y	Full	Superheat	<10	19-24
(BPL)	(IP-2)	Conventional	None	
	Voluntary donors			
Z8	Full	H.T.	<10	Central funded
(SNBTS)	(IP-2)	Conventional	None	free issue
	Voluntary donors			
Profilase S.D.	Full	S/D	<10	16-24
(Alpha)	(IP-2)	Conventional	None	
	Paid donors			
Humate P	Full	Pasteurization	<10	26-36
(Behring)	(IP-2)	Conventional	None	
	Paid donors			

Table 1. Factor VIII concentrates in UK

S/D—solvent/detergent [>]cost dependent upon bulk purchase, regional contract, etc.

Recommendations on choice of therapeutic products

Product (manufacturer)	LIC series (type & pence) donor pool	Viral inact. purification	Sp. act. iu/mg (scicatiles)	Cost ^{>} p∕iu
Defix (SNBTS)	Full (IP-1) Voluntary donors	H.T. Conventional	<10 None	Central funded free issue
9A (BPL)	Transitional (IP-2) Voluntary donors	Superheat Conventional	<10 None	26-27
Factor IX VHP (CRTS Lille)	Named patient (HP-3) Voluntary donors	S/D Ion exchange Chromatography	>100 None	30-40
Mononine (Armour)	CTX (HP-3) Paid donors	Sodium thiocynate MAb Immunoaffin Chromatography	>200 None	N/A
Alpha Nine (Alpha)	CTX (HP-3) Paid donors	S/D Ion exchange Chromatography	>200 None	N/A

Table 2. Factor IX concentrates in UK

S/D—solvent/detergent [>] cost dependent upon bulk purchase, regional contract, etc.